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1. Introduction

Maps of mortality rates have proven useful for

etiologic research and setting public health policy.  For

example, a map of oral cancer rates among white women

for 1950-69 showed a dramatic clustering of high rates in

southeastern states (Mason 1975).  A follow-up study in

North Carolina found that this was due not to an

occupational exposure, as had been suspected, but to snuff

dipping (Winn 1981).  Subsequently, laws were changed

prohibiting the sale of smokeless tobacco to minors.

Mortality patterns result from a combination of

disease occurrence (incidence), screening (if possible),

diagnosis and treatment.  Therefore public health

researchers usually prefer to examine patterns of

incidence, which are closer to the patterns of the

underlying disease.  Unfortunately, we are unable to

produce national incidence maps of cancer because there

is no nationwide cancer registry in the U.S. 

The goal of a new project at the National Cancer

Institute (NCI) is to predict the number of new cancer

cases in the next year by state, gender, type of cancer and,

in the future, race and ethnicity.  In addition to their

usefulness for research and policy making as noted above,

predicted cancer counts are useful for:

! Cancer control – identifying where cancer

screening or prevention programs are needed,

! Health resource planning,

! Cancer surveillance – identifying where or when

rates are changing,

! Quality control for state cancer registries.

The primary source of information about cancer

incidence in the U.S. is the NCI Surveillance,

Epidemiology, and End Results (SEER) program of 11

cancer registries (http://www.seer.cancer.gov/).  In 1992

Congress mandated the creation of a cancer registry in

every state.  The Centers for Disease Control (CDC)

coordinates this effort, but to date not all states have a

functioning registry and some that do are too new to have

achieved a high degree of case coverage (see

http://www.cdc.gov/cancer/npcr/).  A list of registries

certified to be of high quality is given at

http://www.naaccr.org/Certification/index.html.  Medicare

data have been used to estimate state cancer rates, but this

source obviously misses most cases under age 65 and is of

limited use unless a medical procedure is specific to one

type of cancer.

The American Cancer Society (ACS) annually

publishes predicted numbers of new cases of the major

types of cancer by gender for each state (Greenlee 2000).

These are produced by multiplying the aggregated SEER

registries’ cancer incidence rates by age- and gender-

specific nationwide populations, then deriving each state’s

projected incidence from its mortality count using the U.S.

incidence:mortality ratio for that cancer  (Wingo 1998).

Counts are projected into the future using an

autoregressive time trends model.

Because there is no reason to believe that incidence

patterns do not vary geographically as do mortality

patterns, we thought that using smaller area rates to

predict the number of new cases could be more accurate

than using a set of pooled rates for the entire U.S., as the

ACS does.  We proposed to model the relationships

between cancer incidence and relevant covariate data,

including mortality, in SEER registry counties, then apply

this model to non-SEER counties. Predicted county counts

would be summed to predict each state’s number of new

cases.

As a demonstration project, we planned to model data

for several major cancers by gender and age for whites

only.  Data from a recent time period would be

randomized into training and validation datasets so that

model goodness-of-fit could be evaluated.  If such a model

could be shown to work well, rarer cancers and other

racial/ethnic groups could be modeled, and time factors

could be added to project the counts into the future.

      Advantages of this approach to cancer prediction are:

! it utilizes the close relationship between mortality and

incidence for several major cancers, and mortality

data are available annually for all U.S. counties,

! prediction should be improved by including

sociodemographic covariates,

! modeling at the county level allows for differences in

covariate effects across geographic units.

2. Methods

The number of new cancer cases in county i, age

ij[kr]group j, registry k, region r, denoted d , is assumed to

be Poisson distributed, with mean  where

ij[kr]n  is the corresponding population at risk.  (Subscripts

k and r are bracketed because they are uniquely

determined by county i.)  We further assume a log-linear

rate structure, i.e., 

http://(http://www.seer.cancer.gov/).
http://www.cdc.gov/cancer/npcr/).
http://www.naaccr.org/Certification/index.html.


Figure 1. SEER registries and regional definitions.

Table 1. Goodness-of-fit statistics by cancer site.

jwhere a  = centered age j, is the mortality rate for

i[kr]county i, age group j, and X  is a matrix of covariates

for county i.  The regional intercepts, , are considered

to be random effects ( ).  A cubic spline

jfunction of centered ages (f(a )) was necessary to

accommodate downturns in some cancer rates at the

oldest ages. Parameters were estimated using GLIMMIX

with SAS PROC MIXED (Wolfinger 1993,  SAS Institute

1999).

Regions were defined as a combination of Census

Regions and Divisions so that each area contained at least

one SEER registry.  As seen in Figure 1, the entire South

and East North Central regions are represented by a single

urban area (Atlanta and Detroit, respectively). The

inclusion of random effects allows information to be

shared across these sparsely represented regions.  

Sociodemographic variables were constructed from

the Area Resource File (Bureau of Health Professions

1999) and Census data (GeoLytics Inc 1998) for

urban/rural status (Butler 1994), household characteristics,

income, education, occupation, medical facilities and

percent population of Hispanic origin. Collinearity

diagnostics were used to select representative variables

from each of these broad categories to include in the

model. All two-way interactions were first included in the

model. Significant main effects (p<0.05) and very

significant interactions (p<0.01) were retained for the final

models using a backward stepwise selection process.

Because there were no areas where we know the true

number of new cancer cases, two tests were planned to

validate our modeling efforts.  First, we randomized 50%

of all individual cancer cases which occurred during 1995-

96 into a training dataset and the remaining 50% into a

validation dataset.  Thus some cases from every SEER

county were available for modeling.  Secondly, we

randomized the counties in each SEER registry area into

two approximately equal groups and again assigned data

for 1995-96 to training and validation datasets according

to this county grouping.  In the latter task, we were

predicting counts in counties for which we had no data,

similar to the ultimate project goal. These tests will be

referred to as the “Case Task” and “County Task”,

respectively.  By starting with two years of data, each

training dataset had the equivalent of one year’s data.

Eventually we would use all 201 SEER counties to predict

the other non-SEER counties, but these tests provided

known results against which we could test our model.

Goodness of fit was evaluated by comparing observed and

predicted counts, not rates as is commonly

done:

Cancers considered in this demonstration project were

lung and bronchus, prostate, colorectal, and all other

cancers for white men, and breast cancer for white

women.  Earlier work showed that if about 40% or more

of the observations had no events (i.e., no new cases in

40% of the age-county-sex-cancer strata), the likelihood

approximation might yield poor estimates (Pickle 2000).

Therefore we restricted the age ranges to 25+ for breast,

35+ for lung and colorectal, and 45+ for prostate cancer;

these restrictions eliminated only 0.2% of all cases.

3. Results

Not surprisingly, age was the strongest predictor of

incidence for each of the cancers.  Urban/rural status,

education, and mortality rates were significant main effects

for at least two of the five cancers examined and there

were a number of significant interactions.

The observed and predicted counts were quite

close for the case dataset, not only for the total number of

cases among white males, but also for specific types of

cancer (Table 1).  A maximum of 2.5% of the



Figure 3.  Scaled goodness of fit statistics by registry for white female breast cancer incidence

standardized residuals were greater than 2 in absolute

value.  For the more difficult county task, this percentage

ranged as high as 4.6%, still within the 5% expected due

to chance alone. 

For the five states for which the SEER program

includes complete registry data, we can compare our

predictions to an average of  the ACS predictions for 1995

and 1996 (Wingo 1996, Parker 1997; projected from data

through 1992).  As seen in Figure 2a, for the total number

of cases among white males, both methods were relatively

accurate.  However, the effect of applying an aggregate set

of rates to state populations (i.e., the ACS method) is seen

in Figure 2b – for a specific cancer for which there  are

regional differences in rates, e.g., breast cancer, a state

with low rates (Iowa) is overestimated and a state with

high rates (Connecticut) is underestimated.

These results suggest that the model fits are

acceptable.  However, plots of standardized residuals

against the model covariates suggested a problem with

prediction in several urban registries.  In Figure 3, the

Figure 2. Observed, predicted (o), and ACS (+) estimates of the number of new cancer cases by state, 1995-
96 for (a) total cancer among white males, and (b) breast cancer among white females.  



goodness-of-fit statistics defined above is scaled by

dividing by the number of observations per registry.  The

expected value of this scaled statistic is between 1.0 and

2.0, depending on the number of observations.  As seen in

Figure 3, the Los Angeles registry was not fit well, even

though its single county was randomized to the training set

and thus its data was used for modeling.  The prediction

for Atlanta was the worst of all the registries although the

training set of counties were fit well.  Fulton county,

where downtown Atlanta is located, was randomized to

the validation dataset, while several surrounding counties

were in the training set.  Because Fulton county breast

cancer rates are more than 25% higher than its neighboring

counties, the downtown prediction was poor.  Similar

results were seen for the other cancers, with relatively

poorer fits for Atlanta for lung cancer, Detroit for

prostate, colorectal and other cancers, and Los Angeles

for other cancer.

4. Conclusions from initial model

Overall, the initial models predicted the numbers of

new cancer cases very well in both the training and the

validation datasets.  Predicted state totals differed from the

ACS figures in expected ways.  However, there appear to

be relatively large prediction errors for several major

metropolitan areas.  In addition, we had hoped that

mortality rates would be a stronger predictor of incidence.

We were also concerned with the representativeness of

Atlanta for all of the South, and so sought to improve

prediction in this area.

Plans for improving these models included:

! revise the urban/rural county designation to more

specifically identify large core cities,

! aggregate the mortality rates over several years for

stability,

! include incidence data from 10 rural Georgia counties

which are collected through the SEER program but

not included in published statistics,

! add other covariates that may be more direct

measures of cancer risk factors.

5. Revised model

5.1 Model modifications

The original urban/rural indicator was a four-class

aggregation of the USDA codes (codes 0-1, 2-3, 4-5, 6-9)

which are based on population size and metropolitan/non-

metropolitan area status.  For the revised model, we

separated the core cities (code 0) from the other major

metropolitan areas (code 1).

Mortality data were aggregated over the two available

years, 1995-96, in an effort to improve the predictability

of incidence.  Ultimately, a number of years of mortality

would be used to determine the time trends of rates.

Data from the supplemental SEER registry in rural

Georgia were added (for county definitions see

http://seer.cancer.gov/Registries/RuralGeorgia/).  These

counties have approximately a 50% white and 50% black

population, with a total population of about 100,000.

A number of personal lifestyle habits have been

identified as risk factors for the incidence or mortality of

major diseases, including cancer.  However, risk factor

data are generally not available for geographic units below

the state level and so cannot be applied to diseases which

vary across communities.  Epidemiologists may obtain

information about these risk and health care utilization

factors from personal interviews of individuals in very

localized areas.  Information about health insurance

coverage or screening procedures may be available in

some administrative databases, but because these sources

were not set up for research purposes, the data may be

incomplete.

On a broader scale, several national surveys provide

estimates of risk factor prevalence, but only for large

geographic regions (e.g., the National Health Interview

Survey and the National Health and Nutrition Examination

Survey conducted by the National Center for Health

Statistics).  The Current Population Survey (CPS),

conducted jointly by the Census Bureau and the Bureau of

Labor Statistics, includes questions about health insurance

and, in a supplement conducted every few years, tobacco

use.  However, CPS substate estimates are only available

for large population areas.  The Behavioral Risk Factor

Surveillance System (BRFSS) is an ongoing, telephone

survey by CDC that collects and reports health risk data at

the state level (http://www.cdc.gov/nccdphp/brfss/). The

BRFSS data are also available at the county level, but

sample sizes in any single year are too small to provide

reliable estimates below the state level.  We attempted to

stabilize the underlying patterns in these sparse BRFSS

data by aggregating the data over time and then applying

a nonparametric smoothing algorithm.

5.2 BRFSS covariate development

BRFSS data for 1992-98 were aggregated by county

to provide sufficient data for analysis. For each county, we

calculated the mean proportions of the population,

weighted by the sample design weights, who had the

following risk factors:

! ever smoked 100 cigarettes,

! currently smoke cigarettes,

! obesity (body mass index (BMI) > 120% of median)

! women ages 50-64 who had had a mammogram

within the last two years,

! no health plan coverage.

These questions were in the BRFSS core questionnaire, so

were asked in the same way by every state.  In addition,

the wording of these questions was consistent throughout

the period. 

Fewer than 1% of the respondents did not answer the

questions about smoking, mammography, or health plan

coverage, whereas a BMI could not be calculated for 3.5%

http://seer.cancer.gov/Registries/RuralGeorgia/).


of the respondents.  Sixty-two of the 3098 counties had no

residents sampled at all during 1992-98.  These 62 missing

county values were replaced by their respective weighted

state means.  The median number of respondents per

county was 59, who represented 1514 state residents.

Because of the relatively small samples in each

county, patterns in the mapped data appeared quite

scattered (e.g., Figure 4).  In order to reveal underlying

geographic patterns in the data, we smoothed the

proportions by a weighted two-dimensional smoothing

algorithm (Mungiole 1999). The original value for each

county was modified (“smoothed”) according to the

median high and low values of 30 of its nearest neighbors.

The width of this smoothing window (i.e., 30 neighbors)

was sufficient to begin to show regional patterns while

retaining patterns that were apparent in the raw data maps.

The median computation of the algorithm was weighted by

county population. This ensured that unusually high or low

proportions that were reliable due to large populations

were not modified, whereas values based on sparse

populations (e.g., those where state means were

substituted) were modified to be more like those of the

surrounding counties.  After smoothing, clear geographic

patterns emerged (e.g., Figure 5).

Although there is no “gold standard” of risk factor

data with which to check our smoothed patterns, we

calculated the correlations of the BRFSS variables with

lung cancer mortality rates among white males, 1995-96,

before and after smoothing.  Correlations were stronger

after smoothing than before and, of the five factors

examined, current smoking was most strongly correlated

with the lung cancer rates ( ). As expected, having

no health plan was negatively correlated with per capita

income, more so after smoothing.

5.3 Results

The modifications described in section 5.1 were

implemented for white female breast cancer, including the

addition of the smoothed lifestyle and health plan coverage

variables to the original models.  The resulting revised

model included the new mammogram use variable as a

significant interaction with metropolitan area.  The

dispersion parameter was reduced from 1.22 to 1.11,

indicating that this revised model explained more of the

overdispersion than the initial one.  The semivariogram of

the residuals shows no discernible spatial correlation

remaining (Figure 6).

The scaled goodness-of-fit plot by registry (Figure 7)

shows that registries that were fit well by the initial model

are still fit well by the revised model.  In addition, Atlanta

now has an acceptable fit for breast cancer.  The new rural

Georgia data are fit well, but the fit for Los Angeles is not

improved (data not shown).

6. Discussion

Although the initial models fit the data surprisingly

well, the revised model corrects the largest error for breast

cancer incidence prediction.  In addition, the new lifestyle

covariates are promising, e.g., mammogram use remains in

the model as a significant interaction effect. 

Application of the revised model to the white male

data remains to be completed.  Following this, a number of

issues need to be addressed.  For example, as we move

toward publishing predicted numbers of new cancer cases,

should “other” cancers be further split into specific sites?

Also, cases continue to be reported to the SEER registries

for several years after initial diagnosis, but we have not yet

assessed or accounted for the impact of these delays on

our predictions.

Our analysis so far has focused on the estimation of

the number of new cancer cases.  Further work remains to

be done on the variance estimation for these counts.  In

particular, extra variation should probably be introduced

for the smoothed lifestyle variables (i.e., an errors-in-

covariates model).

Finally, the models need to be extended to include

time trends so as to predict the future expected number of

new cancer cases. For quality control purposes, counts

projected one year into the future, i.e., for the next data

year, are desired. However, for resource planning, for

example, counts for the current or next calendar year are

needed, requiring projection several years beyond the

available data.

There are several potential methods for incorporating

time trends into the models described here. NCI publishes

some time trend statistics, such as the average annual

percent change in rates and changepoints of these rates

(Ries 2000, Kim 2000). Our predicted counts could be

adjusted by using these independently estimated trends or

a more parametric assessment of trends could be

undertaken through an extension of the mixed effects

models described here.

Accurate estimates of the numbers of new cancer

cases by state are useful for cancer surveillance, prevention

and control, for state and local resource planning, and as

a quality control check for state cancer registries.  We

have shown that it is possible to improve upon existing

methods of prediction by taking into account the

geographic variation in cancer rates.  
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Figure 4. Observed proportion of males who currently smoke cigarettes, BRFSS, 1992-98.

Figure 5. Smoothed proportions of males who currently smoke cigarettes, BRFSS, 1992-98.



Figure 7.   Scaled goodness of fit statistics by registry, validation dataset of initial (1) and revised (2) modes, white

female breast cancer incidence.

Figure 6.  Robust semivariogram of residuals, breast cancer incidence among

white females, 1995-96.
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